Efferocytosis Assays

quantitative efferocytosis assaysThe Heit lab is excited to announce our latest publication titled Quantitative Efferocytosis Assays, and published in Methods in Molecular Biology [Pubmed] [Article]. This paper describes many of the microscopy and cell based methods we use to study efferocytosis – the processes by which cells such as macrophages identify, engage, engulf and destroy dying (apoptotic) cells.

Efferocytosis plays a key role in maintaining homeostasis. The normal turnover of cells produces tens of billions of dying cells every day which must be removed. During times of injury or infection, the numbers of dying cells generated in our body can reach astronomical proportions, with some studies estimating that as many as 100 billion dying cells are produced daily during these events. Defects in efferocytosis leads to a range of clinical conditions including inflammatory diseases such as atherosclerosis, and autoimmune diseases such as multiple sclerosis. The clinical burden and cost of these diseases is immense, as is the human toll they impart, and as a consequence, understanding efferocytosis is paramount for reducing the burden of these diseases.

A range of methods can be found in this paper, including techniques to prepare and label synthetic targets which mimic dying cells, techniques to prepare and label dying cells such that they are compatible with a range of assays, and techniques to quantify the efferocytic efficiency, and methods to assess the processing of these efferocytic targets, all using a variety of microscopy techniques.

Many of these methods are derived from classical assays for quantifying phagocytosis, the removal and destruction of pathogens by immune cells. Because of this classical basis, many of these methods can be easily employed in most labs without the need for advanced cell processing or microscopy equipment. However, these methods can be combined with advanced live-cell fluorescence microscopy and even super-resolution microscopy, enabling their use in experiments reliant on leading-edge technologies. The methods described in this paper are applicable to a broad range of research questions and investigative approaches, and can be deployed in most labs.

Reference:

Evans AL, Blackburn JW, Yin C, Heit B. Quantitative Efferocytosis Assays. Methods in Molecular Biology: Phagocytosis and Phagosomes. 2017;1519:25-41. [Pubmed] [Article]