Phagocyte Biology Laboratory

Dr. Bryan Heit, Western University

About Us

Welcome! You have reached the homepage for the laboratory of Dr. Bryan Heit. Our lab is part of the Department of Microbiology and Immunology at Western University, and we are members of the Center for Human Immunology, the lead centre for the CIHR Human Immunology Network.

Our interests surround the function of phagocytes – white blood cells which ingest (phagocytose) pathogens, particles, and dead cells. We focus on the cellular and molecular processes which control the function of these cells during the maintenance of homeostasis, infection and chronic inflammatory disease. Central to most of our studies is the study of efferoctyosis – the phagocytic removal of apoptotic (dying) cells, and how failures in this process lead to inflammation, autoimmunity and infection.

What is a Phagocyte?

Phagocytes are a class of white blood cells which have the capacity to engulf large particles such as bacterial and fungal pathogens, and subsequently destroy the engulfed material. The term phagocyte literally translates to “cell that eats”, which is an apt description of the primary function of these cells in our bodies. While there are many types of phagocytes, the Heit lab focuses primarily on macrophages, which play key roles in both maintaining our bodies and in fighting infections.

Our Methods

We use a combination of advanced microscopy techniques, gene expression analysis and functional assays to investigate the activity of macrophages. Some examples of the methods we employ can be found on our YouTube channel.

Follow Us!

YouTube            Dr. Heit on Twitter

Lab News

We’re Hiring – New PhD Position Available

The Position

PhD Position Available

The Heit lab is recruiting a new PhD student, to start in either May or September of 2019. This student will explore the changes in macrophage gene expression and function which occur early in atherosclerosis, thus probing the biological processes which initiate this devastating disease. This is a patient-centred project, which will make extensive use of patient samples and human-derived cells. The student taking on this project will develop expertise in the biology of macrophages and atherosclerosis, develop advanced skills in functional, live cell and super-resolution microscopy, and learn a variety of molecular and cell biology techniques. The skills and knowledge learned in this project will be applicable to a range of academic, governmental and industrial careers. This PhD position is fully funded for the first two years.

The Applicant

The successful applicant will be highly motivated and a self-directed learner. Prior molecular biology and microscopy experience is an asset, but it not required. Applicants should have a BSc (or equivalent) in one of: cell biology, biochemistry, immunology, or a related field. Please ensure that you meet the Admission Requirements for the Department of Microbiology and Immunology at the University of Western Ontario prior to applying. This position is open to domestic (Canadian) and international applicants; international applicants should confirm that they qualify for entry into Canada prior to applying for this position.

How To Apply

To apply for this position send Dr. Heit an email containing:

  1. A Cover Letter describing why you are interested in the project and your suitability for the position.
  2. Your Curriculum Vitae.
  3. If entering with a Bachelors degree: An electronic copy of your transcripts (unofficial are acceptable)
  4. If entering with a MSc (or equivalent) degree: A copy of your degree or a letter from your current supervisor confirming your enrolment and expected completion date.

If you have already been accepted into the Microbiology & Immunology graduate program and are searching for a supervisor, please send me an email informing my that you’ve been accepted into the program and are interested in this position. The cover letter, grades and CV are not required in this situation.

Applications missing this information will not be considered.

Happy Holidays from the Heit Lab

SRRF Imaging

Original Image

One of the best parts of science is bringing new techniques and technologies into your lab. Our newest technique is SRRF imaging, which can more than double the resolution of nearly any widefield microscope, and can even be employed on living samples. The improvement this technology adds can be seen in the images of bovine aortic epithelial cells on the left, which have been stained for actin (yellow), DNA (cyan) and mitochondria (magenta).

SRRF imaging uses a specialised deconvolution approach which relies on the mapping of radial symmetry to resolve the positions of  fluorophores with high precision. This process is repeated over a number of frames (10-100), with the convergence of signals between images used to refine fluorophore positions and non-convergence used to remove noise. The result is a dramatic improvement in both resolution and signal-to-noise ratios.

SRRF image (100 frames)

This amazing advance in microscopy was made possible by the work and free NanoJ plug-in for ImageJ/FIJI produced by Ricardo Henriques’s group at University College, UK. SRRF imaging will soon be available to approved users via our widefield core.

Additional papers and resources on SRRF Imaging:

New Methods Paper Published

The Heit lab is excited to announce the publication of our latest paper – a video methods paper describing our procedure for performing highly quantitative and precise measurements of efferocytosis. This is also our first publication with our new collaborator, Dr. Dan Wootton from the University of Liverpool.

Taruc, K., Yin, C., Wootton, D. G., Heit, B. Quantification of Efferocytosis by Single-cell Fluorescence Microscopy. J. Vis. Exp. (138), e58149, doi:10.3791/58149 (2018).

Twitter Feed

Here's what some of the people we follow are saying:

Upcoming Events